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Mid-Semester Evals

Generally, things seem good!
General
= Examples are appreciated in lecture
= Favorite aspect: projects (almost all) --- writtens significantly less preferred
Office hours:
= Most common answers: “Helpful.” and “Haven’t gone.”
= Some: too crowded. - perhaps try a different office hour slot
Section:
= Split between basically positive and don’t go
Assignments
= Written: median time 6hrs
= Programming: median time 10hrs
= Some people spend a lot more time though > come talk to us if you are stuck
Exams:
= Midterm: evening (13) vs in-class (11) or indifferent (8)
Want to do the contest




Contest

= Course contest

= Fun! (And extra credit.)
= Regular tournaments
= Instructions posted soon!

Outline

» HMMs: representation

= HMMs: inference
» Forward algorithm
= Particle filtering




Recap: Reasoning Over Time

= Stationary Markov models

OO0 & e

P(X1) P(X|X_1)

= Hidden Markov models P(E|X)
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o @ @ @ @ sun umbrella 0.2
sun no umbrella 0.8

Conditional Independence

= HMMSs have two important independence properties:
MN"- Markov hidden process, future depends on past via the present «—
= Current observation independent of all else given current state
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* Quiz: does this mean that observations are independent
given no evidence?
= [No, correlated by the hidden state]




Real HMM Examples

= Speech recognition HMMs:
= Observations are acoustic signals (continuous valued)

= States are specific positions in specific words (so, tens of
thousands)

= Machine translation HMMs:
= Observations are words (tens of thousands)
= States are translation options

= Robot tracking:
= Observations are range readings (continuous)
= States are positions on a map (continuous)

Outline

= HMMSs: representation

= HMMs: inference
» Forward algorithm
= Particle filtering




Filtering / Monitoring

= Filtering, or monitoring, is the task of tracking the
distribution B(X) (the belief state) over time

= We start with B(X) in an initial setting, usually uniform
= As time passes, or we get observations, we update B(X)

* The Kalman filter was invented in the 60’s and first
implemented as a method of trajectory estimation for the
Apollo program

Example: Robot Localization

- F\ ‘_ Example from
\(d - = - - Michael Pfeiffer

| T
Prob 0 1

t=0
Sensor model: never more than 1 mistake <%+

Motion model: may not execute action with small prob.




Example: Robot Localization

Prob 0 1

t=1

Example: Robot Localization

Prob 0 1

t=2




Example: Robot Localization

Prob 0 1

t=3

Example: Robot Localization

Prob 0 1

t=4




Example: Robot Localization

Prob 0 1

Inference Recap: Simple Cases

W~

P(X1le1) P(X2)
P(z1ler) = P(x1,e1)/P(e1) P(xz) = ;P(wl,wg)
ocx, P(z1,e1) =" P(x1)P(xo|1)
= P(a1)P(erley), L ol
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Passage of Time

= Assume we have current belief P(X | evidence to date)

B(Xy) = P(X¢le1:t) @_'@
= Then, after one time step passes:

P(Xt+1\€1 1) = ZP(Xt+1|93t)P(93t| )

el
= Or, compactly:
BAX 1) = 3 P(X'|2) B
Tt

= Basic idea: beliefs get “pushed” through the transitions

= With the “B” notation, we have to be careful about what time step
t the belief is about, and what evidence it includes

Example: Passage of Time

= As time passes, uncertainty “accumulates”

NPA N NS
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T=1 T=2 T=5

B'(x" =Y P(X'|z)B(x)

Transition model: ghosts usually go clockwise




. (‘(b): V)/me\:t-\)
Observation

= Assume we have current belief P(X | previous evidence):/
B/(Xi41) = P(Xppylery) ?

Then:

P(Xiq1leri41) o< P(epy1]| Xpqp1) P(Xyp1lery) <

B(Xi41) o P(e|X)B'(X¢41)

Basic idea: beliefs reweighted by likelihood of evidence

Unlike passage of time, we have to renormalize

Example: Observation

= As we get observations, beliefs get
reweighted, uncertainty “decreases”

0.03 | 0.03 /<0.01}<0.01/<0.01{<0.01,

Before observation After observation

B(X) « P(e|X)B'(X)
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0.500 0.6271
0.373

0.500

True  0.500 — 0.é!18 O.JS3 -

False 0.500 0.182 0.117

The Forward Algorithm

= We are given evidence at each time and want to know

By(X) = P(X¢le1:t)
- b We can normalize
as we go if we

= We can derive the following updates want to have
P(x|e) at each
P(x¢leq:4) ocx Pz, e1-4) time step, or just
E— once at the end...
= > P(m_1,2t,€1:1)
Ti—1
= > P(x¢_1,e1:4-1)P(xt|wi—1) Pet|wy)
T_1 L’—\/_‘—’
= P(et|wy) > P(xilwi—1)P(xi—1,e1:4-1)

Ti—1
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Online Belief Updates

= Every time step, we start with current P(X | evidence)
=  We update for time:

P(xiler—1) = > Plzi—1lers—1) - P(@ilwp—1) ®;®

Tg—1

= We update for evidence:
P(zile1:y) ocx P(wiler:i—1) - Pletlt) ? ’

= The forward algorithm does both at once (and doesn’t normalize)
* Problem: space is |X| and time is |X|2 per time step

Recap: Filtering

— Elapse time: compute P( X;| €4..1)
P(ziler.—1) = Z P(xi—1lers—1) - P(xe|axi—1)

Tt—1

— Observe: compute P( X;| e4;)

P(x¢ler.) o< P(xiler—1) - Plet|xy)

Belief: <P(rain), P(sun)>

a @ P(X;) <0.5,05> Prior on X,

P(X, | E1 = umbrella) <0.82,0.18> Observe
@ @ P(X5 | By = umbrella) <0.63,0.37>  Elapse time
)

P(Xs5 | Ey = umb, E5 = umb) <0.88,0.12>  Observe
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Outline

= HMMs: representation

= HMMs: inference
» Forward algorithm
= Particle filtering
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Particle Filtering

= Filtering: approximate solution

= Sometimes |X| is too big to use
exact inference
= |X| may be too big to even store B(X)
= E.g. X'is continuous

= Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles

= Time per step is linear in the number
of samples

= But: number needed may be large

= In memory: list of particles, not
states

= This is how robot localization
works in practice

00 | 0.1 | 00
00 | 0.0 | 02
00 | 02 | 05
®
(Y
o0 %
0| 1

6(»()

22
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Particle Filtering: Elapse Time

= Each particle is moved by sampling its
next position from the transition model

—y 2/ = sample(P(X'|z))
e
= This is like prior sampling — samples’
frequencies reflect the transition probs
= Here, most samples move clockwise, but

some move in another direction or stay in
place

= This captures the passage of time

= |f we have enough samples, close to the
exact values before and after (consistent)

Particle Filtering: Observe

= Slightly trickier:
= We don’t sample the observation, we fix it
= This is similar to likelihood weighting, so

we downweight our samples based on
the evidence

Lﬁ(_:E) = P(e|x)

—% B(X) x P(e|X)B'(X)

= Note that, as before, the probabilities
don’t sum to one, since most have been
downweighted (in fact they sum to an
approximation of P(e))

E 4
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Particle Filtering: Resample

Rather than tracking weighted
samples, we resample

N times, we choose from our weighted

sample distribution (i.e. draw with ° .'. oo
replacement)
This is equivalent to renormalizing the s/
distribution
Now the update is complete for this e o
time step, continue with the next one oo
e | @o_| o
OCH
\
Particle Filtering
Sometimes |X| is too big to use
exact inference LHE LHE
= |X| may be too big to even store B(X)
= E.g. Xis continuous 00 | 00 | 02
= |X|?2 may be too big to do updates
00 | 02 | 05
Solutlon approximate inference
= Track samples of X, not all values
= Samples are called particles
= Time per step is linear in the number ®
of samples
= But: number needed may be large
= In memory: list of particles, not oo
states
0,
This is how robot localization ®0 oo

works in practice
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Representation: Particles

= Qur representation of P(X) is now )
a list of N particles (samples)
= Generally, N << |X| 'Y )
= Storing map from X to counts
would defeat the point @ 0
o0 | %

= P(x) approximated by number of
particles with value x Particles:

= So, many x will have P(x) = 0! gg;

= More particles, more accuracy (3.3)

3.2)

(3.3)

= For now, all particles have a gf;
weight of 1 (33)
(3.3)

@1
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Particle Filtering: Elapse Time

= Each particle is moved by sampling its
next position from the transition model
e
o’ = sample(P(X'|z))
oo ¥'
= This is like prior sampling — samples’
frequencies reflect the transition probs
= Here, most samples move clockwise, but
some move in another direction or stay in l
place
= This captures the passage of time ® OL
= If we have enough samples, close to the ®
exact values before and after (consistent) ® oo ©04
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Particle Filtering: Observe

= Slightly trickier: N
= Don’t do rejection sampling (why not?)
= We don’t sample the observation, we fix it e (oo
= This is similar to likelihood weighting, so
we downweight our samples based on ® ) P
the evidence o0
w(xz) = P(e|z)
B(X) o« P(e|X)B'(X) 2

= Note that, as before, the probabilities

don’t sum to one, since most have been *l |
downweighted (in fact they sum to an ®
approximation of P(e)) ® |lg®| oo

Particle Filtering: Resample

= Rather than tracking Olc(j;;)n\,'f:l%i
weighted samples, (2,1) w=0.9 °
we resample (2,1) w=0.9
(3,1) w=0.4
(3,2) w=0.3 = 00O
= N times, we choose (2,2) w=0.4
from our weighted (1,1) w=0.4 @
sample distribution (3,1) w=0.4 ° le@|°°
(i.e. draw with (2.1) w=0.9
replacement) (32) w=0.3
Old Particles:
= This is equivalent to (2,1) w=1
renormalizing the (2,1) w=1
distribution (21) w=1
(3,2) w=1
(2,2) w=1 Y
= Now the update is (2,1) w=1
complete for this time (1,1) w=1 P
step, continue with (3,1) w=1 'Y 2pOE)
the next one (1) w1 L
(1,1) w=1

17



41

Robot Localization

= In robot localization:
= We know the map, but not the robot’s position
= Observations may be vectors of range finder readings

= State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

= Particle filtering is a main technique

= [Demos]

18



